翻訳と辞書 |
Reversed field pinch : ウィキペディア英語版 | Reversed field pinch
A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic fusion energy. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally (see inset) reverses its direction, giving rise to the term "reversed field". This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a perfect laboratory for non-ideal (resistive) magnetohydrodynamics. RFPs are also used in the study of astrophysical plasmas as they share many features. The largest Reversed Field Pinch device presently in operation is called the Reversed-Field eXperiment (RFX) in Padua, Italy. Others include the Madison Symmetric Torus, EXTRAP T2R in Sweden, and TPE-RX in Japan. ==Characteristics== Unlike the Tokamak, which has a much larger magnetic field in the toroidal direction than the poloidal direction, an RFP has a comparable field strength in both directions (though the sign of the toroidal field reverses). Moreover, a typical RFP has a field strength approximately one half to one tenth that of a comparable Tokamak. The RFP also relies on driving current in the plasma to reinforce the field from the magnets through the dynamo effect.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Reversed field pinch」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|